Translocon pores in the endoplasmic reticulum are permeable to small anions.

نویسندگان

  • Beáta Lizák
  • Ibolya Czegle
  • Miklós Csala
  • Angelo Benedetti
  • József Mandl
  • Gábor Bánhegyi
چکیده

Contribution of translocon peptide channels to the permeation of low molecular mass anions was investigated in rat liver microsomes. Puromycin, which purges translocon pores of nascent polypeptides, creating additional empty pores, raised the microsomal uptake of radiolabeled UDP-glucuronic acid, while it did not increase the uptake of glucose-6-phosphate or glutathione. The role of translocon pores in the transport of small anions was also investigated by measuring the effect of puromycin on the activity of microsomal enzymes with intraluminal active sites. The mannose-6-phosphatase activity of glucose-6-phosphatase and the activity of UDP-glucuronosyltransferase were elevated upon addition of puromycin, but glucose-6-phosphatase and beta-glucuronidase activities were not changed. The increase in enzyme activities was due to a better access of the substrates to the luminal compartment rather than to activation of the enzymes. Antibody against Sec61 translocon component decreased the activity of UDP-glucuronosyltransferase and antagonized the effect of puromycin. Similarly, the addition of the puromycin antagonist anisomycin or treatments of microsomes, resulting in the release of attached ribosomes, prevented the puromycin-dependent increase in the activity. Mannose-6-phosphatase and UDP-glucuronosyltransferase activities of smooth microsomal vesicles showed higher basal latencies that were not affected by puromycin. In conclusion, translationally inactive, ribosome-bound translocons allow small anions to cross the endoplasmic reticulum membrane. This pathway can contribute to the nonspecific substrate supply of enzymes with intraluminal active centers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis.

Proteins synthesized by the rough endoplasmic reticulum (RER) co-translationally cross the membrane through the pore of a ribosome-bound translocon (RBT) complex. Although this pore is also permeable to small molecules, it is generally thought that barriers to their permeation prevent the cyclical process of protein translation from affecting the permeability of the RER. We tested this hypothes...

متن کامل

Ribosome-translocon complex mediates calcium leakage from endoplasmic reticulum stores.

Under resting conditions, the endoplasmic reticulum (ER) intraluminal free calcium concentration ([Ca(2+)](ER)) reflects a balance between active uptake by Ca(2+)-ATPases and passive efflux via 'leak channels'. Despite their physiological importance and ubiquitous leak pathway mechanism, very little is known about the molecular nature of these channels. As it has been suggested that the open tr...

متن کامل

Gating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes

Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...

متن کامل

The Aqueous Pore through the Translocon Has a Diameter of 40–60 Å during Cotranslational Protein Translocation at the ER Membrane

Eukaryotic secretory proteins are cotranslationally translocated through the endoplasmic reticulum (ER) membrane via aqueous pores that span the lipid bilayer. Fluorescent probes were incorporated into nascent secretory proteins using modified Lys-tRNAs, and the resulting nascent chains were sealed off from the cytosol in fully assembled translocation intermediates. Fluorescence quenching agent...

متن کامل

Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling

Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 291 3  شماره 

صفحات  -

تاریخ انتشار 2006